Evaluation of a Central Traffic Signal System and Best Practices for Implementation
Author(s):
Gordon Parikh, John Hourdos
March 2019
Report no. MnDOT 2019-14
Projects:
Evaluation of Central Traffic Signal System and Best Practices for Implementation: Phase 1
Detailed Intersection Control Information (ICI), including timing, phasing, geometric, and demand attributes, is an increasingly important resource for researchers, consultants, and private sector companies for many applications, including development of traffic models and technologies such as vehicle information or automation systems. While this information has historically been difficult to distribute due to variations in the availability and format across the numerous jurisdictions that operate signals, recent trends toward increased use of Central Traffic Signal Control Systems (CTSCSs) have made creation of a unified, standardized system for organizing ICI more feasible. To help work toward this, in this project researchers interviewed and surveyed signal operation engineers and transportation modelers throughout Minnesota to learn how different jurisdictions manage information relating to their signals and how this information is used for operations and planning. With this information, researchers developed a comprehensive Unified Set of Intersection Control Information (U-ICI) that contains all the information required to describe the control of an intersection in a format that is readable by both humans and machines. Along with this, researchers evaluated the availability of this information and the feasibility of using existing CTSCS applications to store this information. While the researchers conclude that it is not feasible to use these applications to store all of the U-ICI, the applications will likely make the process of implementing and populating such a system easier. Though some information may be contained in formats that will require manual effort to digitize, the up-front effort to do so will be a worthwhile pursuit.
Download or order
Download PDF
(12 MB)