The Pedestrian Crossing Experience in Minnesota

John Hourdos Minnesota Traffic Observatory

Greg Lindsey
Humphrey School of Public Affairs

Michael Petesch MnDOT

Outline

- Framing the conversation legally and realistically
- Observation is the key to understanding
- Lessons learned

Thou shalt yield!!

- Motorists must treat every corner and intersection as a crosswalk, whether it's marked or unmarked, and drivers must stop for crossing pedestrians.
- Pedestrians must obey traffic control devices, and when no traffic control device is present, motorists must stop for crossing pedestrians within a marked crosswalk or at an intersection with no marked crosswalk.

https://dps.mn.gov/divisions/ots/laws/Pages/bike-pedestrian.aspx

Let's unpack this a bit.

- Subd. 20.Crosswalk. "Crosswalk" means
 - (1) that portion of a roadway ordinarily included with the prolongation or connection of the lateral lines of sidewalks at intersections;
 - (2) any portion of a roadway distinctly indicated for pedestrian crossing by lines or other markings on the surface.
- Subd. 36.Intersection. "Intersection" means
 - the area embraced within the prolongation or connection of the lateral curb lines or, if none, then
 - the lateral boundary lines of the roadways of two highways which join one another at, or approximately at, right angles or
 - the area within which vehicles traveling upon different highways joining at any other angle may come in conflict.

Some of the Fine Print.

- Crossing between intersections.
 - (a) Every pedestrian crossing a roadway at any point other than within a marked crosswalk or at an intersection with no marked crosswalk shall yield the right-of-way to all vehicles upon the roadway.
 - (b) Any pedestrian crossing a roadway at a point where a pedestrian tunnel or overhead pedestrian crossing has been provided shall yield the right-of-way to all vehicles upon the roadway.
 - (c) Between adjacent intersections at which traffic-control signals are in operation pedestrians shall not cross at any place except in a marked crosswalk.

More Fine Print

- Subd. 2.Rights in absence of signal.
 - (a) Where traffic-control signals are not in place or in operation, the driver of a vehicle shall stop to yield the right-of-way
 - The driver must remain stopped until the pedestrian <u>has passed the lane</u> in which the vehicle is stopped.
 - (b) When any vehicle is stopped at a marked crosswalk or at an intersection with no marked crosswalk to permit a pedestrian to cross the roadway, the driver of any other vehicle approaching from the rear shall not overtake and pass the stopped vehicle.

Some Common Logic

- The driver must first notice the pedestrian in order to yield,
 - and acknowledge the intention to cross.
- The driver must realize that it is a "Pedestrian right-of-way" location.
- Pedestrians, like water, will follow the shortest path.

An Escalation of Safety Treatments

The MTO Research

Observations

2010: Pedestrian Experience in Two Modern Urban Roundabouts

Richfield Yielding Probability	
General	41.4% (-4.7% if Bicycle n.s.)
Exiting Roundabout	22.8% (+22.2% if Entering)
Middle Island start	53%
66th St crossings	39.9%
Portland Ave crossings	44.7%

Minneapolis Yielding Probabilit	ty
General	83.3% (-1% if Bicycle n.s.)
Exiting Roundabout	81.5% (+3.6% if Entering)
Middle Island start	93.6%

Summary of Findings

Yielding Behavior

- Crossing start: Island start = higher yield
- Direction of traffic: Exits = lower yield
- Pedestrian group size: Larger group increases yield chances.
- Distance from vehicle lane: If vehicle is in the lane near the pedestrian then it has higher probability of yielding.
- Vehicle was alone: If the vehicle was alone it had lower probability of yielding

Pedestrian Delay

- Richfield roundabout
 - Average crossing delay: 2.3 sec overall
 - Average crossing with traffic delay:
 - Non Yielding: 10.6 sec with std of 10 sec
 - Yielding: 3.8 sec with std of 7 sec
- Minneapolis between 1/3 and ½ of above.
- Typically, average delay for a signalized intersection would be less than ½ of total cycle length. For Richfield ~30sec delay.

2019: Assessing the Impact of Pedestrian Activated Crossing Systems

- 31 sites selected
 - 19 RRFB sites (1 before/after)
 - 6 LED sites (6 before/after)
 - 4 HAWK sites
 - 2 standard signal sites

Site Selection

- Factors considered:
 - Treatment type
 - Speed limit
 - Vehicle volume (AADT)
 - Lanes crossed
 - Traffic islands
 - Intersection type (4-way, T, midblock, free right turn)
 - Surroundings (urban, rural, school zone, etc.)

Project Questions

- How does a Flashing LED Ped sign impact the rate of vehicles yielding to pedestrians at free right turns?
- How does a delayed activation impact the compliance of pedestrians in waiting to cross a street?
- How do refuge islands impact yielding to pedestrians?
- How do traffic islands impact wait times for pedestrians?
- How does the number of lanes affects yielding?
- How do yield rates differ per lane on multilane road crossings?
- Does the presence/type of the PAC affect the yield rate of far lanes on multilane roads?
- Which system is more effective at midblock crossings?
- Which system results in the lowest pedestrian delay?
- How often were HAWKs used properly by pedestrians?by drivers?
- Which system performed best at busy intersections?
- What was the rate of vehicles yielding to pedestrians by type of intersection (right turn, midblock, three-way, four-way)?
- What was the rate of vehicles yielding to pedestrians by treatment type?
- What was the rate of vehicles yielding to pedestrians by traffic volume?
- What was the rate of vehicles yielding to pedestrians on bikes?
- What was the rate of vehicles yielding to pedestrians by speed limit?
- What was the rate of vehicles yielding to pedestrians by conflict direction (left turn, right turn, near side through, far side through, etc.)?
- What was the rate of vehicles yielding to pedestrians by environment (school zone, rural, residential, commercial, etc)?
- What were pedestrian wait and crossing times?
- What was the rate of pedestrians using the crossing system?
- If not all vehicles yield to a pedestrian, how many vehicles did not yield to pedestrian by system?

Data Analysis – HAWKs

	Island	Lanes	All Driver Yield Rate			
Site	Destination	Crossed	Activated	Not Activated		
10	No	3	94.5%	58.3%		
10	Yes	3	64.2%	62.1%		
6	n/a	2	81.2%	75.0%		
7	n/a	2	88.5%	56.5%		
9	No	2	93.0%	100%		
9	Yes	2	66.2%	42.8%		

•	Yield rate is higher when ped is crossing from
	an island than when crossing to an island

•	Yield	rate	higher	when	HAWK	is	activated
---	-------	------	--------	------	-------------	----	-----------

	Lanes	Avg. Delay in seconds (Std. Dev.)					
Site	Crossed	Activated	Not Activated				
10	3	14 (7)	12 (15)				
6	2	16 (5)	11 (10)				
7	2	15 (4)	5 (8)				
9	2	15 (7)	17 (14)				

• The avg. delay is higher when the HAWK is activated but the Std. dev. of delay is lower

	Activation rate when				
Site	vehicles were present				
10	70%				
6	66%				
7	92%				
9	91%				

Activation rate is similar to non-HAWK sites

Data Analysis – HAWKs

	Avg. number of vehicles not stopping (per event)						
Site	Yellow Phases Red Phases						
10	0.367	0.113					
6	0.576	0.011					
9	0.816	0.154					
7	1.440	0.236					

	Percent of events where vehicles				
Site	moved during blinking red phase				
6	25%				
10	41%				
7	47%				
9	76%				

- With the exception of Site 7, driver compliance on yellow and solid red is high
- Varying compliance on flashing red

Data Analysis – Non-HAWKs

- Signal clearly gives right-of-way
- RRFBs and LEDs still work as passive signs when not activated

Data Analysis – Non-HAWKs

- Activation rate increases with number of lanes crossed
- Activation rate higher at two-phase crossings (+)
 - especially when there is also a signal (++)
- No correlation between lanes crossed and delay

Data Analysis – Non-HAWKs

				Speed					All Driver	Yield Rate
	Lanes	All biter	ection R	Rate Limit	Lanes	# of		Overhead		
Treatment	Crossed	Activated T	/pe No	t Activeted	Crosse	d Conflicts	Treatment	RRFB?	Activated	Not Activated
RRFB	1	72.3% Fou	-Way	66.2 ³⁰	3	5	RRFB	Yes	91.30%	66.67%
RRFB	2	78.0% Fou	-Way	60.4%	3	5	RRFB	No	78.00%	53.33%
RRFB	3	79 10 T-Inte	rsection	59.2%	2	2	RRFB	Yes	72.01%	5 0.79%
RRFB	4	60 d‰l-Inte	rspection	k4 80%0	Lanes 2	# of	RRFB	All Di	188.70%	8 2.93%
Signal	2All Dri	ver Yielsh Ravie (sta	maletisize	26.9%	pssed 2	Conflicts	RRFB	Activate	d Not Activa section 53.3%	6.67%
Site		/ated Four-Way			↑ o o	atment ⁴	RRFB RRFB Lange Grosse	78.0% d NO 7	ype 71.93% 20.6%	2 7.27%
U4	100.0	% (30) Midblock		45 L ₂₀ (175)	1	RRFB 1	RRFB RRFB	69.4%		
46		6 (185) Midblock		. 3 % (3)	2	RRFB 2	RRFB	67. 5%		
27		IVIIGDIOCK	_			RRFB 4	RRFB	54. 5%		
l l l	Number of	(100) - Intersection	All Drive	Yield Rate	<u> </u>	RRFB 2		80. 4%	-	
Treatment		(44)T-Intersection			vated	- +	RRF ß			
RRFB ¹	1 44./9	% (76) Is-Intersection	12 % 12	. 50 % (8) _{52.1}	<u>,,</u> 3	RRFB 4	RRF ß	71. 9% u		
RRFB	2	No-Intersection	9.8%	55 51.1	_% 2	2	RRFB	82.3%	69.6%	
RRFB	2	Ves-Intersection).8%	55 67.4	_% 2	3	RRFB	85.4%	68.4%	
RRFB	25 3	73 ₇ 1% (130) 8	5.4%	55.1% (/	1 9)	RRFB		1	Midblock	
RRFB	Jza 4	72,1% (172) 6	3.2%	66.7%	3 (2)	RRFB		2	Midblock]
	J2b 5	68,7% (198) 7	3.0%	35.5%(1	Q/)	RRFB		2	Midblock]
RRFB	4 6	81,8% (22) 5	9.1%	50.9%	6)	RRFB		2	Midblock	
Signal	11 2	98,0% (151)	3.9%	14.7%	<u>,,</u>)	Signal		2	Midblock]

Summary Findings

- PACs are most effective at sites...
 - without good sight distances and/or advance warning
 - with a high number of movements conflicting with the crosswalk
- Speed limit is not a good predictor of effectiveness
- Yield rates are generally higher with overhead RRFBs (even when not activated)

Questions

John Hourdos

Director | Minnesota Traffic Observatory
Civil, Environmental, and Geo-Engineering Dept. | University of Minnesota

500 Pillsbury Dr SE

Minneapolis, MN 55455

Email: hourd001@umn.edu

Work ph: <u>612-626-5492</u>

